IPLOOK IPLOOK XGW PRODUCT DESCRIPTION

IPLOOK Technologies

PLOOK

www.iplook.com

LOOK Technologies Co., Limited

IPLOOK XGW Product Information

www.iplook.com

IPLOOK Technologies / IPLOOK Technologies Co., Limited

Date (2022-01-24)

PLOOK

Revision history

Version	Usage	Modification Summary	Reviser	Reviewer	Revision
0	State				date
1.1	Initiation		David	Li	28-06-18
	Version				
1.2	Done	Support Gx and Gy	David	Li	13-09-20
1.3	Done	Add Radius function	Kevin	James	26-03-21
1.4	Done	Add Volte function	Kevin	James	05-11-21

Table of Contents

1 Introduction.....-1 -

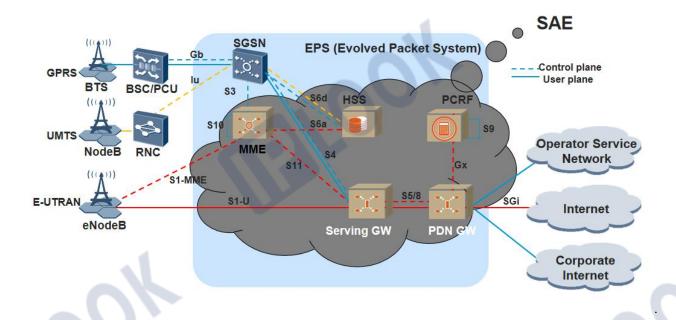
ILOOK

1.1 xGW overview1-	
1.2 Highlight features 3 -	
1.2.1 Virtualization3 -	
1.2.2 Carrier-grade High Availability	
1.2.3 Multi-NE Deployment3 -	
1.2.4 Open Interfaces and Flexible Network Architecture3 -	
1.2.5 Sophisticated Operation and Maintenance System 4 -	
1.2.6 NFV Performance Optimization Techniques 4 -	
2 System architecture 5 -	
2.1 IPLOOK xGW in the NFVI5 -	
3 Functionality7 -	
3.1 Basic function7 -	
3.1.1 Session management7 -	
3.1.2 Path management8 -	
3.1.3 Address assignment9-	
3.1.4 xGW integration 11 -	
3.1.5 Billing function 13 -	
3.1.6 QoS control 15 -	
3.1.7 Multi PDN connection 16 -	
3.1.8 S5/S8	
3.1.9 SGi 18 -	
3.1.10 GN	

www.iplook.com

3.1.11 Ga 22 -	
3.1.12 Gx 22 -	
3.1.13 Gy 23 -	
3.1.14 Radius function 26 -	
3.1.15 Volte function 28 -	
4 Operation and Maintenance 29 -	
5 Reliability design 30 -	
5.1 Software Reliability 30 -	
6 Interfaces and Protocols 30 -	
7 Dimension 32 -	
7.1 Dimension sheet 32 -	
8 Roadmap 33 -	
9 Acronyms and Abbreviations 35 -	

www.iplook.com


yor

1 Introduction

1.1 xGW overview

EPC refers to a core network architecture that supports LTE access networks. IPLOOK provides Long Term Evolution/Evolved Packet Core (LTC/EPC). The PGW provides connectivity between the UE and external packet data networks. It provides the entry and exit point of traffic for the UE. A UE may have simultaneous connectivity with more than one PGW for accessing multiple Packet Data Networks. The PGW/GGSN performs policy enforcement, packet filtering for each user, charging support, lawful interception and packet screening. S-GW is the gateway that terminates at the E-UTRAN interface. IPLOOK xGW provides flexible network deployment capabilities. xGW can be deployed in EPC networks as individual SGW network elements, individual PGW network elements, and combined xGW network element functions.The location of xGW in the EPC network is shown in Figure 1. *Figure 1 Schematic Diagram*

The xGW product is IPLOOK's self-developed core gateway platform that integrates GGSN/SGW/PGW functions.

Table 1 Core network node description

Name	Function		

IPLOOK Technologies Co., Limited

Name	Function
E-UTRAN	Evolved UMTS Terrestrial Radio Access Network.
MME	The Mobility Management Entity (MME) represents the control plane for the User Equipments(UEs) to access the 4G LTE, or EPS network. From a UE's perspective, signaling for access control, location tracking, and bearer set up is performed via the MME.
HLR/HSS	Home Location Register, which stores the subscription data and location information of subscribers and provides route information for calls from the network to subscribers. Home Subscriber Server, which stores the subscription data and location information of subscribers and implements subscriber authentication and authorization.
MSC	Mobile Switching Center, which provides the call conversion service and call control between the telephony and data systems.
CG	Charging Gateway, which lies between the Gn/Gp SGSN/GGSN and the Charging Center to send CDR files to the Charging Center.
SGW	The service gateway that implements user-plane data routing in the EPC network.
PGW/GGSN	Gateway GPRS Support Node, which provides routing and encapsulation of data packets between the 3G core-network and external data network. In EPC network, the GGSN is evolved into a PGW(the packet data network gateway) function node, that implements subscriber access to the PDN in the EPC network.
PCRF	Implements policies and charging rules.

IPLOOK Technologies Co., Limited Suite 1101, On Hong Commercial Building, 145 Hennessy Road, Wanchai Hong Kong

Name	Function
PDN	Provides the data transmission service for subscribers.

1.2 Highlight features

1.2.1 Virtualization

Software and hardware are decoupled through virtualization. The IPLOOK xGW software can be deployed quickly and operate on universal hardware devices of the X86 COTS server or VM/container based virtual platform.

1.2.2 Carrier-grade High Availability

The IPLOOK xGW hardware resources are virtualized to many VMs. When the IPLOOK xGW needs to increase its processing capability, more VMs can be installed.

The IPLOOK xGW supports redundancy and disaster recovery of components and NEs. NEs can be deployed in the entire resource pool through distributed deployment of VMs to enhance system reliability.

The IPLOOK xGW supports smooth evolution and system migration through online patches and application updates.

1.2.3 Multi-NE Deployment

The IPLOOK xGW and other VNFs can be deployed on the same hardware platform. Generally IPLOOK xGW and IPLOOK xGW are deployed.

1.2.4 Open Interfaces and Flexible Network Architecture

IPLOOK xGW products provide open and standard interfaces and allow smooth upgrades and expansion.

Support of High speed Ethernet transport allows its integration into any of the existing networks. Safe integration without impact is also ensured by supporting the legacy interfaces and signaling protocols towards the existing network elements.

For implementing authentication and charging (for some enterprise users) function, IPLOOK xGW connects with Radius server.

IPLOOK Technologies Co., Limited

Suite 1101, On Hong Commercial Building, 145 Hennessy Road, Wanchai Hong Kong

IPLOOK xGW supports Gy interface (based on diameter protocol) to connect with OCS for online charging and supports Gx interface (also based on Diameter protocol) to connect with PCRF for Policy and Changing control.

1.2.5 Sophisticated Operation and Maintenance System

The IPLOOK xGW performs daily maintenance and management through the EMS/OMM and VNFO.

The IPLOOK xGW functions can be maintained on the local OMM and in the upper-layer EMS. The features are as follows:

The OMM uses the B/S structure, and the EMS uses the C/S structure, ensuring a desirable networking capability and expansion of the operation and maintenance system.

Provides remote and local access to the system so that both local and remote operation and maintenance can be implemented. Maintenance operations can be performed on the entire system and each specified NE.

Multi-level permission mechanism to ensure system security.

1.2.6 NFV Performance Optimization Techniques

Network Function Virtualization (NFV) is a core structural change in the way telecommunication infrastructure gets deployed. This in turn will bring significant changes in the way that applications are delivered to service providers. NFV will bring cost efficiencies, time-to-market improvements and innovation to the telecommunication industry infrastructure and applications. NFV will achieve this through disaggregation of the traditional roles and technology involved in telecommunications applications.

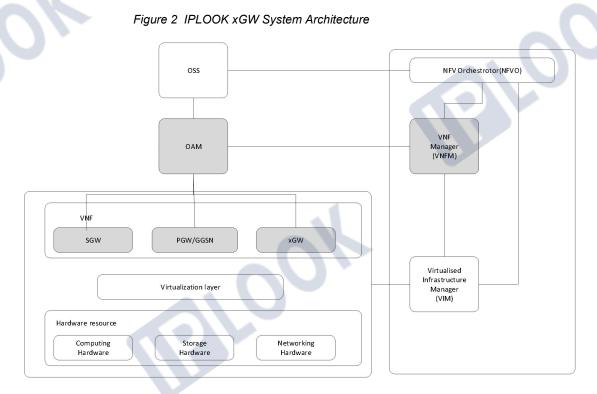
Performance, especially the user plane performance using COTS has always been a concern for service providers and equipment vendors alike. IPLOOK's vEPC address the issue by applying the following performance optimization techniques to the user plane software processing module.

Combine the Single Root I/O Virtualization (SR-IOV) with Intel's Data Plane Development Kit (DPDK) techniques to enhance the performance.

Apply Open vSwitch (OVS) on enhanced Intel's DPDK (By IPLOOK) to further enhance the data processing performance.

In addition, by using specific 10G, 40G or 100G NIC from Intel, the performance can be further enhanced.

IPLOOK Technologies Co., Limited


Suite 1101, On Hong Commercial Building, 145 Hennessy Road, Wanchai Hong Kong

2 System architecture

2.1 IPLOOK xGW in the NFVI

IPLOOK xGW Support virtualization deployment and customization of private and public cloud systems.

For a description of the architecture of the IPLOOK MME, refer to Table 2.

Table 2 IPLOOK MME System A	Architecture Descriptions
-----------------------------	---------------------------

Node	Description
OAM	Comprehensive service operation and management platform, which provides various functions such as network management , system management and daily maintenance and management for xGW.
NEVI	Network functions virtualization infrastructure, which refers to physical

IPLOOK Technologies Co., Limited

Suite 1101, On Hong Commercial Building, 145 Hennessy Road, Wanchai Hong Kong

Node	Description
	resources.
	The NFVI is provided and managed by the cloud platform.
Hypervisor	Arranges and manages NFV resources (infrastructure and applications) in the
00.	network, and deploys the NFV service on the NFVI.
Hardware	Includes computer hardware, storage hardware, and network hardware.
NFVO	Arranges and manages network services, virtualization resources, and physical
	resources in the network.
VNFM	Manages the xGW lifecycle.
VIM/CMS	Management module of the NFVI, which is the VIM in the ETSI NFV and the
	CMS in the CCSA.
	The VIM/CMS is a system managing virtual infrastructure, managing and
	monitoring infrastructure-layer hardware resources and virtualization
	resources, monitoring and reporting alarms, and providing virtual resource
	pools for upper-layer applications.
.1	The VIM/CMS are operation interfaces providing virtual resources related to
	the VNF for the NFVO and VNFM.
	• The VIM/CMS is a cloud platform management function provided by the cloud
U ·	platform. General applications include TECS, VmWare, and Openstack.

IPLOOK Technologies Co., Limited Suite 1101, On Hong Commercial Building, 145 Hennessy Road, Wanchai Hong Kong

- **3** Functionality
- 3.1 Basic function
- 3.1.1 Session management

3.1.1.1 Definition

Session management is the basic function of GW500, which enables ue to connect to PDN,

manage PDP context / EPS bearer, establish, update and delete it.

3.1.1.2 Dependency

UE	eNodeB	MME	S-GW	PDN-GW	PCRF	HSS
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		-

3.1.1.3 Principle description

GPRS session management

PDP context activation: after UE completes the attachment process to GPRS network, it can initiate PDP context activation request. After completing the request, a data path from ue to PDN will be established. In the process, the network side will complete IP address allocation, QoS configuration and other operations according to the request message and signing data.
PDP context deactivation: the operation of releasing PDP context initiated by UE, SGSN or GGSN. After deactivation, the IP address used by the UE is released, and the PDP context in SGSN and GGSN is deleted.

IPLOOK Technologies Co., Limited Suite 1101, On Hong Commercial Building, 145 Hennessy Road, Wanchai Hong Kong

 PDP context update: initiated by UE, SGSN or GGSN to modify the activated PDP context parameters, such as QoS or TFT.

EPS session management

• UE attachment: an EPS bearer will be established when the UE is connected to the core network and will not be released when connected to the PDN, which is called the default bearer.

• Default bearer activation: initiated by the UE and can be performed during or after the attachment is completed. It is used for an attached ue to apply to other PDNs to establish a connection.MME completes the selection of S-GW and P-GW, and P-GW completes IP address allocation and UE access to external PDN.After the default bearer is activated successfully, the UE can communicate with the PDN through the EPC network.

 Proprietary bearer activation: initiated by P-GW to establish a bearer context using specific QoS and TFT.After the proprietary bearer is activated successfully, the data service requested by the user will be protected by the specified QoS.

• Proprietary bearer deactivation: initiated by MME or PGW, one or more EPS bearers can be deactivated. The IP address of UE is released, and the bearer context in MME and P-GW is deleted.

• Proprietary bearer update: it is initiated by UE, HSS or P-GW to update the parameters of EPS bearer context, such as QoS and TFT.

3.1.2 Path management

3.1.2.1Definition

3.1.2.2 Principle overview

The path management function of GW500 mainly detects the communication path failure with the opposite end network element and the working state of the opposite end network element by

Suite 1101, On Hong Commercial Building, 145 Hennessy Road, Wanchai Hong Kong

IPLOOK Technologies Co., Limited

sending a path management message. After sending the path management message to the opposite NE, if the GW500 does not receive the response message returned by the opposite NE within the time period configured by the system, it will resend the detection message. In case of GTP interface path failure, GW500 does not resend the detection message and immediately responds to the failure of the opposite end. If no response is received after reaching the maximum number of retransmissions configured by the system, it is considered that the communication path or the opposite network element is faulty.

Message type

agreement	explain
Path management message of GTP	Path management message based on echo message.
protocol	Path management messages based on non echo messages.
Path management	Path management message based on heartbeat
message of PMIPv6	message.
protocol	

3.1.3 Address assignment

3.1.3.1 Definition

GW500 supports three ways to provide users with IP addresses: static address allocation, local

address allocation and radius allocation. It can provide users with three types of addresses:

IPv4, IPv6 and IPv4v6 (dual stack).

Suite 1101, On Hong Commercial Building, 145 Hennessy Road, Wanchai Hong Kong

IPLOOK Technologies Co., Limited

www.iplook.com

3.1.3.2 Dependency

UE	eNodeB	MME	S-GW	PDN- GW	PCRF	HSS	AAA SErver
-			-		-		

3.1.3.3 Principle description

3.1.3.3.1 How to get IP

When the UE establishes the default bearer, it will carry the PDN address allocation cell, which contains the address type and IP address that the UE needs to use when accessing the PDN.In the EPC network, the MUE indicates the desired IPv4 / IPv6 / IPv4v6 address acquisition method of the network, so as to obtain the IP address.

3.1.3.3.2 Distribution mode

 Static address allocation method: the static address allocation method means that the UE uses the IP address determined when signing the packet service with HLR / HSS, carries the IP address in the cell when the bearer context is activated, and sends it to GW500 through the activation request message.

 Local address pool allocation method: refers to the IP address (dynamic address) directly obtained by UE from the address pool configured for users in GW500 using the bearer context activation stage.

• Radius address allocation method: refers to the IP address obtained from the radius server during user authentication when the bearer context is activated.GW500 supports the allocation

IPLOOK Technologies Co., Limited

3.1.3.3.3 Application scenario

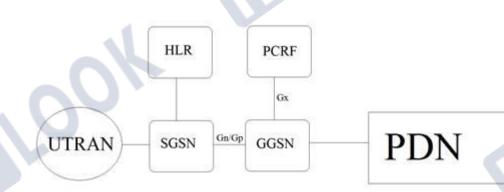
- Static address allocation method: users can be assigned a fixed IP address.
- Local address pool allocation method: operators do not need to separately deploy devices that allocate IP addresses to users, which can save operation costs.
- Radius address allocation method: applicable to RADIUS Server managed by enterprise network or ISP.

3.1.4 xGW integration

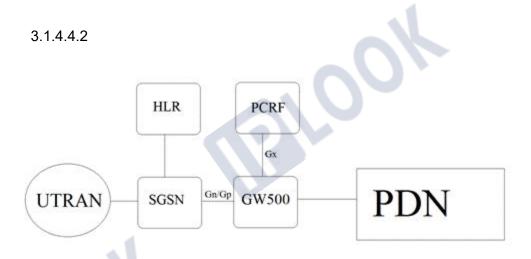
3.1.4.1 Definition

GW500 supports that 3G Users can access PDN and carry out various data services through GPRS and EPC networks.

3.1.4.2 Dependency


UE	eNodeB	MME	S-GW	PDN-GW	PCRF	HSS
N		\checkmark	\checkmark	\checkmark	-	

IPLOOK Technologies Co., Limited


Suite 1101, On Hong Commercial Building, 145 Hennessy Road, Wanchai Hong Kong

3.1.4.3.1

User access networking architecture in GPRS network

User access networking structure based on GN interface

IPLOOK Technologies Co., Limited Suite 1101, On Hong Commercial Building, 145 Hennessy Road, Wanchai Hong Kong

3.1.5 Billing function

3.1.5.1 Definition

Billing is a cost calculation system established by operators according to certain tariff policies in order to measure users' occupation of network resources.Huawei GW500 supports two billing systems defined by 3GPP and RFC standard protocols: online billing and offline billing.Online billing is realized through the interaction between Gy interface and OCS, and offline billing is realized through the interaction between GA interface and CG.

3.1.5.2 Dependency

UE	eNodeB	MME	S-GW	PDN-GW	PCRF	HSS
-	-	-		\checkmark		-

3.1.5.3 Principle description

3.1.5.3.1 Billing logic

 When the user is activated, GW500 judges the user's billing method according to the charging characteristics, APN and other information carried in the create PDP context request / create session request message, integrating the billing method issued by PCRF and AAA server and the locally configured billing method.

 After the service flow arrives, GW500 records the traffic, duration and other information generated during the PDP context / EPS bearer online, and generates billing data and billing bill through interaction with OCS / CG signaling. For content billing users, after the service flow

arrives, GW500 analyzes the characteristics of the service flow, matches the rules of the policy library according to the analysis results, and then records the uplink and downlink traffic according to the billing parameters defined by the rules to generate billing data and billing bills.

3.1.5.3.2 Billing method

The charging methods of GW500 are divided into three categories:

• Offline billing: record the user's resource usage, generate a bill, and send the bill to CG through GA interface for billing.

• Offline hot charging: it has all the functions of ordinary offline charging, and the bill generation speed is faster than ordinary offline charging.

 Online billing: record user resource usage, generate bills, and send bills to OCS through Gy interface for billing.

3.1.5.3.3 Billing method selection

- Selection of online / offline billing methods

 The online billing methods on GW500 include PCRF distribution, AAA server distribution and local configuration. The offline billing methods include PCRF distribution and local configuration.
 The local configuration has three granularity: user profile, APN and CC. The priority of these methods is reduced in turn.

 If the PCRF is deployed in the network to control the online / offline billing mode, the PCRF carries the online / offline AVP in the CCA-I message to indicate whether the IP-CAN session enables online / offline billing.

• If PCRF is deployed in the network and PCRF supports issuing OCS-ID, PCRF sends OCS-ID defined in GW500 in CCA-I message to instruct the user to enable online billing.

IPLOOK Technologies Co., Limited

• If the PCRF is not deployed in the network and the AAA server supports issuing OCS-ID, the

AAA server issues the OCS-ID defined in GW500 in the access accept message to instruct the user to enable online billing.

• If PCRF is not deployed in the network and the AAA server does not support issuing OCS-ID, the locally configured online / offline billing method is used

3.1.6 QoS control

3.1.6.1Definition

When the user uses the Internet service, GW500 marks the user message and controls the rate of the user's uplink and downlink data.

3.1.6.2 Dependency

UE	eNodeB	MME	S-GW	PDN-GW	PCRF	HSS
-	-	-	-	\checkmark	-	-

3.1.6.4 Principle description

3.1.6.4.1 QoS function logic

GW500 QoS provides different levels of services for bearer.UE is allowed to obtain different

levels of services under different bearers. The uplink and downlink data rates of the bearer can

be controlled in different services.

3.1.6.4.2 QoS level service bearer

Suite 1101, On Hong Commercial Building, 145 Hennessy Road, Wanchai Hong Kong

IPLOOK Technologies Co., Limited

- In GPRS network, each PDP context has a set of independent QoS attributes associated with

it.R97 / 98 QoS and R99 QoS have different attribute sets.

- R97 / 98 QoS attribute (defined in 02.60, 03.60 and 04.08 specifications of 3GPP):
- Priority class: priority class
- Delay class
- Reliability class
- Peak throughput: peak throughput class
- Average throughput: mean throughput class
- R99 QoS attribute (defined in 23.060, 23.107 and 24.008 specifications of 3GPP, where
- 23.107 defines the conversion rules between R97 / R98 QoS and R99 QoS):
- Business category: traffic class
- Maximum bit rate for uplink
- Maximum bit rate for downlink
- Guaranteed bit rate for uplink
- Guaranteed bit rate for downlink

3.1.7 Multi PDN connection

3.1.7.1 Definition

Multi PDN connection means that a UE can connect multiple PDNS at the same time to access

different networks.

```
IPLOOK Technologies Co., Limited
```

Suite 1101, On Hong Commercial Building, 145 Hennessy Road, Wanchai Hong Kong

www.iplook.com

3.1.7.2 Dependency

UE	eNodeB	MME	S-GW	PDN-GW	PCRF	HSS
V	V	\checkmark	\checkmark		\checkmark	\checkmark

3.1.7.3 Principle description

 According to 3GPP protocol, EPS (evolved packet system) supports a UE to exchange IP services with multiple PDNS simultaneously through one or more P-GW.

 GW500 supports the establishment of PDN connection initiated by UE and the disconnection of PDN connection initiated by UE or MME.

3.1.7.3.1 Establishing PDN connection initiated by UE

• UE can use multiple APNs to access different PDN networks at the same time. After UE initiates a PDN connection establishment request, MME determines the S-GW and P-GW that should be used for each PDN connection. During or after the default bearer establishment, the P-GW assigns an independent IP address to the UE for each PDN connection, and the UE uses the IP address to access the corresponding PDN. At the same time, each PDN connection can establish one or more proprietary bearers.

3.1.7.3.2 PDN disconnection initiated by UE or MME

 Both UE and MME can initiate a PDN connection disconnection request to disconnect the UE from a PDN.In this process, the S-GW and P-GW will release all bearers from the UE to the PDN, including the default bearer.

IPLOOK Technologies Co., Limited

3.1.8 S5/S8

3.1.8.1 Definition

S5 / S8 interface: signaling interface and user interface between S-GW and P-GW, used for bearer establishment, update and deletion, and user uplink and downlink data transmission.

3.1.8.2 Dependency

S5 / 8 interface

UE	eNodeB	MME	S-GW	PDN-GW	PCRF	HSS
-	-	-	$\overline{\mathbf{A}}$	\checkmark	-	-

3.1.8.3 Principle description

3.1.9 SGi

3.1.9.1Definition

SGi interface: as the interface between P-GW and PDN.

3.1.9.2 Dependency

SGI interface

IPLOOK Technologies Co., Limited Suite 1101, On Hong Commercial Building, 145 Hennessy Road, Wanchai Hong Kong

UE	eNodeB	MME	S-GW	PDN-GW	AAA Server
-	-	-	-		

3.1.9.4 Principle descriptio

3.1.10 GN

3.1.10.1Definition

Gn interface: in the indirect tunnel mode, GN interface is the signaling interface and user interface between Gn / Gp SGSN and GGSN / P-GW.In direct tunnel mode, Gn interface is the signaling interface between Gn / Gp SGSN and GGSN / P-GW, and the user interface between RNC and GGSN / P-GW.

3.1.10.2 Dependency

GN interface

UE	eNodeB	MME	S-GW	SGSN	PDN-GW	PCRF	HSS
-	-	-	-			-	-

3.1.10.3 Principle description

3.1.10.1 Interface message

IPLOOK Technologies Co., Limited

- GN interface message

messages	direction	effect
Forward Relocation	Gn/Gp SGSN-	Request inter rat handover from UTRAN / GERAN
Request	>MME	to e-utran for the user.
	MME->Gn/Gp	Request inter rat switching from e-utran to UTRAN
	SGSN	/ GERAN for the user.
Forward Relocation	MME->Gn/Gp	Returns the request result of the forward
Response	SGSN	relocation request message.
	Gn/Gp SGSN-	
	>MME	
	MME->Gn/Gp	
Forward Relocation	SGSN	
Complete		Returns the result of successful switching.
Notification	Gn/Gp SGSN-	
	>MME	
Forward Relocation	Gn/Gp SGSN-	Returns the confirmation result of the forward
	>MME	relocation complete notification message.
Acknowledge		
	MME->Gn/Gp	
	SGSN	
SGSN Context	MME->Gn/Gp	Request mm and PDP context for user.
Request	SGSN	יוכיקעבאנ ווווו מווע דשד גטוונפגנ וטו עאפו.
SGSN Context	Gn/Gp SGSN-	Return the request result of SGSN context
	>MME	request message.

IPLOOK Technologies Co., Limited Suite 1101, On Hong Commercial Building, 145 Hennessy Road, Wanchai Hong Kong

www.iplook.com

00

01

		When the reason value of SGSN context
SGSN Context	MME->Gn/Gp	
Acknowledge	SGSN	response message is accept, respond to the
Acknowledge	3031	message.
		inocouge.

IPLOOK Technologies Co., Limited Suite 1101, On Hong Commercial Building, 145 Hennessy Road, Wanchai Hong Kong www.iplook.com

K

3.1.11 Ga

3.1.11.1Definition

Ga interface: the interface between GGSN / S-GW / P-GW and charging gateway entity CGF (charging gateway functionality) to run GTP protocol.

3.1.11.2 Dependency

Ga interface

UE	eNodeB	MME	S-GW	PDN-GW	PCRF	HSS
-	-	-	-	V	\checkmark	-

3.1.12 Gx

3.1.12.1Definition

Gx interface: signaling interface between P-GW and PCRF.

3.1.12.2 Dependency

Gx interface

UE	eNodeB	MME	S-GW	PDN-GW	PCRF	HSS
-	-	-	-	\checkmark	\checkmark	-

IPLOOK Technologies Co., Limited

3.1.12.3 Principle description

3.1.12.3.1 Interface message

PLOOK

GX interface message

messages	direction	effect
moodagoo		
(Credit-Control-	P-GW->OCS	PCEF sends it to OCs to request charging
Request)CCR		rules for UE bearer.
(Credit-Control-	OCS->P-GW	Response message from CCR.
Answer)CCA		
(Re-Auth-	OCS->P-GW	OCS actively provides QoS to PCEF
Request)RAR	. (through push.
(Re-Auth-	P-GW->OCS	Returns the request result of the RAR
Answer)RAA		message.

3.1.13 Gy

3.1.13.1 Definition

- S5 / S8 interface: signaling interface and user interface between S-GW and P-GW, used for

bearer establishment, update and deletion, and user uplink and downlink data transmission

• SGi interface: as the interface between P-GW and PDN.

IPLOOK Technologies Co., Limited

 Gn interface: in the indirect tunnel mode, Gn interface is the signaling interface and user interface between Gn / Gp SGSN and GGSN / P-GW. In direct tunnel mode, GN interface is the signaling interface between Gn / Gp SGSN and GGSN / P-GW, and the user interface between RNC and GGSN / P-GW.

- Ga interface: the interface between GGSN / S-GW / P-GW and charging gateway entity CGF (charging gateway functionality) to run GTP protocol.
- Gx interface: signaling interface between P-GW and PCRF.
- Gy interface: Gy interface is the signaling interface between GGSN / P-GW and OCS.

3.1.13.2 Dependency

Gy interface

UE	eNodeB	MME	S-GW	PDN-GW	OCS
-	-	-		\checkmark	\checkmark

3.1.13.3 Principle description

3.1.13.3.1 Interface description

Gy interface message

message	direction	effect	
(Credit-	P-GW-	PCEF sends it to OCs to request	
Control-	>OCS	charging rules for UE bearer.	

IPLOOK Technologies Co., Limited

Suite 1101, On Hong Commercial Building, 145 Hennessy Road, Wanchai Hong Kong

Request)CCR		V
(Credit-	OCS->P-	Response message from CCR.
Control-	GW	
Answer)CCA		L _
(Re-Auth-	OCS->P-	OCS actively provides QoS to PCEF
Request)RAR	GW	through push.
(Re-Auth-	P-GW-	Returns the request result of the RAR
Answer)RAA	>OCS	message.
(Abort-	OCS->P-	OCS notifies P-GW of termination of
Session-	GW	specific dialogue.
Request)ASR		~0~
(Abort-	P-GW-	Returns the request result of the ASR
Session-	>OCS	message.
Answer)ASA		
(Disconnect-	P-GW-	PCEF notifies OCS that the data path
Peer-	>OCS	will be closed.
Request)DPR		
(Disconnect-	OCS->P-	Returns the request result of the DPR
Peer-	GW	message.
Answer)DPA		
(Capabilities-	P-GW-	The P-GW informs the OCS of link

Exchange-	>OCS	maintenance.
Request)CER		
(Capabilities-	OCS->P-	Returns the request result of the CER
Exchange-	GW	message.
Answer)CEA		
(Device-	P-GW-	Heartbeat check between P-GW and
Watchdog-	>OCS	ocs.
Request)DWR		
(Device-	OCS->P-	Returns the request result of the DWR
Watchdog-	GW	message.
Answer)DWA		

3.1.14 Radius function

PLOOK

3.1.14.1 Definition

GW500 realizes radius authentication and radius billing functions by using RADIUS protocol

with radius server.

1.14.2 Dependency

UE	eNodeB	MME	S-GW	PDN-GW	AAA Server

IPLOOK Technologies Co., Limited

3.1.14.3 Principle description

 GW500 realizes the functions of radius authentication and radius billing by using RADIUS protocol communication with radius server.

Radius authentication: refers to UE authenticating through GW500 to AAA server,

Radius billing: refers to that the GW500 sends the user billing information to the AAA server,

and the radius server completes the billing related processing.

3.1.14.3.1 Radius authentication

- Assign UE IP address in radius mode
- The IP address UE assigned by the mobile user is the address (dynamic address) obtained

when the radius server completes the authentication request in the PDP context activation stage.

- Support PAP (password authentication protocol) and CHAP (Challenge Handshake

Authentication Protocol) authentication

• When users access the network and carry PAP or chap in PCO, GW500 supports

corresponding authentication for users.

3.1.14.3.2 Radius billing

- Charging with radius server
- When the GW500 triggers the sending of the billing message due to user activation, update,

deactivation and other reasons, the GW500 sends the billing message to the user's

authentication server according to the record to complete the user's authentication server

allocation and address recovery.

IPLOOK Technologies Co., Limited

3.1.15 Volte function

3.1.15.1 Definition

- Connect the user terminal to the IMS network to provide voice and video services

• Voice over LTE (voice over LTE) is an LTE voice solution defined by 3GPP standard and

based on IMS (IP multimedia subsystem) network.GW500 can provide voice call and video

services to IMS network.

3.1.15.2 Dependency

UE	eNodeB	MME	S-GW	PDN-GW	PCRF	HSS
√			\checkmark	\checkmark	\checkmark	

3.1.15.3 Principle description

The UE supports IMS services, the PCRF issues corresponding QoS policies, and the GW500 supports the creation of corresponding IMS signaling context or bearer to complete IMS business processes.

4 Operation and Maintenance

The IPLOOK provides a perfect operation and maintenance function and supports the unified EMS to implement daily maintenance and management.

Based on the Client/Server architecture, the operation and maintenance subsystem provides a GUI operation and maintenance subsystem and a Web UI performance measurement system to support customized human-machine interfaces.

The operation and maintenance subsystem supports three modes of operation:

- You can log in to the OAM server through a Web browser for management and operations
- Accessing to the OMC maintenance center for centralized management by the OMC.
- Remote operation and maintenance, accessing to the internal network through the dial-

up server, and remote maintenance based on the Web.

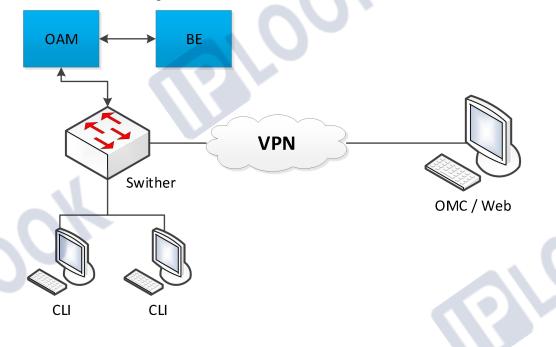


Figure 3 shows the network architecture

IPLOOK Technologies Co., Limited Suite 1101, On Hong Commercial Building, 145 Hennessy Road, Wanchai Hong Kong

5 Reliability design

5.1 Software Reliability

Most IPLOOK solutions or products are 100% software solution, they are cloud based NFV solution and infrastructure agnostic, so IPLOOK recommends our customer purchasing the hardware/servers themselves, and it is benefit to maintain those hardware/servers by a local service company. IPLOOK could provide the turnkey solution, hardware with pre-installed software that will be shipped from mainland China to the customer premise, and IPLOOK will provide a local hardware maintenance service with our partners.

IPLOOK software business model is SnS (Subscription and Support) model. SnS provides customers with the latest software patches, software versions (including new features), and basic software technical support services. Software patches, software versions (including new features), and basic software technical support services are packed and charged by year.

IPLOOK will provide first-year free of cost licenses for software maintenance including patches, new version upgrade etc.

5.1.2 Software License Design

Software features are included in different software packages to meet requirements of different sales scenarios. Software packages can be divided into a basic package and several value-added packages. Customers can purchase the **basic package** and **value-added packages** based on their network development.

The pricing and quotation are made for a software package instead of specific features in the package. The **basic package** is mandatory for each purchase.

6 Interfaces and Protocols

The related interfaces, protocols and functions of the IPLOOK xGW are listed in following table.

Interface	Description	Protocol
Interface	Description	Protocol
Gn/Gp	Transmitting signaling/data between SGSN/GGSN	GTP
Gx	Transfer of (QoS) policy and charging rules	Diameter

IPLOOK Technologies Co., Limited

ILOOK

Interface	Description	Protocol
Gy	Online Charging	Diameter
Ga	Offline Charging	GTP'
Gi	Forwarding data to the external network	IP
Gi	Authentication, Authorization, and Accounting	Radius
S11	Transmitting GTP signaling	GTPv2
S1-U	Transmitting GTP data	GTP-U
S5/S8	Implementing mobility management and transmitting package between SGW and PGW.	GTPv2
SGi-PDN	Forwarding data to the external network	IP
SGI-AAA	Authentication, Authorization, and Accounting	Radius

7 Dimension

7.1 Dimension sheet

NE	128	1000	2000	5000	10000	20000
	120		2000	5000	10000	20000
	200Mbps	1Gbps	5Gbps	10Gbps	20Gbps	40Gbps
GGSN	2 cores	4 cores	8 cores	16 cores	32 cores	48 cores
\mathcal{O}	4G mem	8G mem	16G mem	32G mem	64G mem	128G mem
SGW	2 cores	4 cores	8 cores	16 cores	32 cores	48 cores
	4G mem	8G mem	16G mem	32G mem	64G mem	128G mem
PGW	2 cores	4 cores	8 cores	16 cores	32 cores	48 cores
	4G mem	8G mem	16G mem	32G mem	64G mem	128G mem
PGW/GGSN	2 cores	4 cores	8 cores	16 cores	32 cores	48 cores
	4G mem	8G mem	16G mem	32G mem	64G mem	128G mem
xGW	4 cores	6 cores	16 cores	24 cores	48 cores	-
	4G mem	8G mem	32G mem	64G mem	128G mem	
xGW/GGSN	2 cores	6 cores	16 cores	24 cores	48 cores	-
	4G mem	8G mem	32G mem	64G mem	128G mem	

IPLOOK Technologies Co., Limited Suite 1101, On Hong Commercial Building, 145 Hennessy Road, Wanchai Hong Kong

8 Roadmap

V400P11R04B04C00S03	V400P11R05B03C00S03	V400P11R05B08C00S04	V400P11R06B09C00S05	V400P11R08B09C00S07
Evolution Session management APN Service Secondary authentication Ue address allocation Qos Charging(GTP/RADIUS/OCS) Anti-Spoofing Traffic Shaping Content Based Billing DiffServ Marking NB-IOT	Evolution Lawful interception	Evolution R16 Compliance DPI enhance	Evolution R17 compliance GTP Router intergration	Evolution R18 compliance
Nb-IO1 Gh/S1u/S5/S8/S11/SGI/Ga/Gx/Gy O&M support		Security Firewall DDOS attack protection	Security VPN NAT	<u> </u>
Reliability & Capacity Private cloud adaption Stateless framework Session recovery N-Active redundancy 10Gbps platform	Reliability & Capacity Health Check 40Gbps platform	Reliability & Capacity Private container adaption	Reliability & Capacity 100Gbps platform	
~Q4 2021	Q2 2022	Q4 2022	2023	2024~2025

IPLOOK Technologies Co., Limited Suite 1101, On Hong Commercial Building, 145 Hennessy Road, Wanchai Hong Kong

K

9 Acronyms and Abbreviations

PLOOK

Table 6 Acronyms and Abbreviations

Explanation
Second Generation
the third Generation mobile communications
Third Generation Partnership Project
Third Generation Partnership Project 2
Asynchronous Transfer Mode
Authentication Center
Attribute Value Pair
Business Operator and Supporting System
Base Station Controller
Customized Application for Mobile network Enhanced Logic
CAMEL Application Part
Capital Expenditure
Content Based Charging
Content based Charging Gateway
Charge Gateway
Core Network
Commercial Off The Shelf
Circuit Service
Call Session Control Function
Equipment Identity Register

ILOOK

		_
EMS	Element Management System	
EPS	Evolved Packet System	
EUTRAN	Evolved Universal Terrestrial Radio Access Network	
FCAPS	Fault, Configuration, Accounting , Performance, Security	
FTP	File Transfer Protocol	
GGSN	Gateway GPRS Support Node	
GPRS	General Packet Radio Service	
GSM	Global System for Mobile communications	
HLR	Home Location Register	
HSS	Home Subscriber Server	-
IM-SSF	IMS – Service Switch Function	-
IMS	IP Multimedia Subsystem	-
IMSI	International Mobile Subscriber Identity	-
IOT	Inter-Operation Test	-
ITU	International Telecom Union	-
LAI	Location Area Identity	-
MAP	Mobile Application Part	
MME	Mobility Management Entity	
MMS	Multimedia Message Services	
MS	Mobile Station	
MSC	Mobile Switching Center	-
MSISDN	MS ISDN	-
including and		

IPLOOK Technologies Co., Limited Suite 1101, On Hong Commercial Building, 145 Hennessy Road, Wanchai Hong Kong

Mean Time To Repair	
Network Address Translation	
Network element	
Network Function Virtualization	
Network Management	
Network Resource Identifier	
Operation and Maintenance Center	
Online Charging System	
Operating Expense	
Packet Data Protoco1	
Public Land Mobile Network	
Packet Over SONET/SDH	
Packet Service	
Quality of Service	
Remote Authentication Dial In User Service	
Radio Access Network	
Radio Access Network Application Part	
Radio Network Controller	
Radio Network Subsystem	
Remote Radio Unit	
Stream Control Transmission Protocol	
Serving Gateway	
	Network Address Translation Network element Network Function Virtualization Network Management Network Resource Identifier Operation and Maintenance Center Online Charging System Operating Expense Packet Data Protoco1 Public Land Mobile Network Packet Over SONET/SDH Packet Service Quality of Service Remote Authentication Dial In User Service Radio Access Network Radio Access Network Application Part Radio Network Subsystem Remote Radio Unit Stream Control Transmission Protocol

SIGTRAN	Signaling Transport	
SMS	Short Message Service	
SMSC	Short Message Service Center	
SMTP	Simple Mail Transfer Protocol	
SS7	Signaling System Number 7	
TCP/IP	Transmission Control Protocol/Internet Protocol	
TECS	Tulip Elastic Computing System	
UMTS	Universal mobile telecommunication system	

IPLOOK Technologies Co., Limited Suite 1101, On Hong Commercial Building, 145 Hennessy Road, Wanchai Hong Kong www.iplook.com

K